Durée : 144 minutes

Algèbre linéaire Examen Partie commune Automne 2021

Enoncé

Pour les questions à **choix multiple**, on comptera :

- +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue
- -1 point si la réponse est incorrecte.

Pour les questions de type vrai-faux, on comptera :

- +1 point si la réponse est correcte,
 - 0 point si la question n'est pas répondue
- -1 point si la réponse est incorrecte.

Les notations et la terminologie de cet énoncé sont celles utilisées dans les séries d'exercices et le cours d'Algèbre linéaire du semestre d'Automne 2021.

Notation

- Pour une matrice $A,\,a_{ij}$ désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur $\vec{x} \in \mathbb{R}^n$, x_i désigne la *i*-ème coordonnée de \vec{x} .
- $-I_m$ désigne la matrice identité de taille $m \times m$.
- $-\mathbb{P}_n$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- $-\mathcal{M}_{m,n}(\mathbb{R})$ désigne l'espace vectoriel des matrices de taille $m \times n$ à coefficients réels.
- Pour $\vec{x}, \vec{y} \in \mathbb{R}^n$, le produit scalaire est défini par $\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + \ldots + x_n y_n$.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1 : La droite qui approxime le mieux au sens des moindres carrés les points (-2, -4), (0, 0), (1, 4), (2, 1), (4, -1) est

$$y = \frac{1}{2} - \frac{1}{2} x.$$

$$y = -\frac{1}{2} + \frac{1}{2}x.$$

$$y = \frac{1}{2} + \frac{1}{2} x.$$

$$y = -\frac{1}{2} - \frac{1}{2} x.$$

Question 2: L'inverse $B = A^{-1}$ de la matrice

$$A = \begin{pmatrix} 1 & -1 & -2 \\ -3 & 4 & 7 \\ 4 & -2 & -7 \end{pmatrix}$$

est telle que

$$b_{32} = -2.$$

$$b_{32}=2.$$

$$b_{32} = 1.$$

$$b_{32} = -1.$$

Question 3 : Soit A une matrice symétrique telle que

$$\vec{v}_1 = \left(egin{array}{c} 1 \\ 0 \\ 2 \end{array}
ight), \quad \vec{v}_2 = \left(egin{array}{c} -2 \\ 0 \\ 1 \end{array}
ight) \quad {
m et} \quad \vec{v}_3 = \left(egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight)$$

sont des vecteurs propres de A associés, respectivement, aux trois valeurs propres -5, 5 et 2. Alors

Question 4 : Soit a un paramètre réel. Le système

$$\begin{cases} x + ay + 3z = 0 \\ y - 2z = 3 \\ -x + 4y + 4z = a \\ (a+6)y + 3z = a^2 \end{cases}$$

- admet au moins une solution si et seulement si $a \in \{-2, 3\}$.
- admet une infinité de solutions si et seulement si a = -2.
- n'admet pas de solution si et seulement si $a \in \{-2, 3\}$.
- admet une unique solution si et seulement si a = 3.

Question 5: Soit

$$A = \left(\begin{array}{ccccc} 0 & 6 & 7 & 8 & 9 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 6 & 1 & 5 \\ 1 & 3 & 1 & 2 & 2 \\ 0 & 0 & 5 & 0 & 4 \end{array}\right).$$

Alors on a

 $\Box \det(A) = 6$. $\Box \det(A) = -24$. $\Box \det(A) = 0$. $\Box \det(A) = 48$.

 ${\bf Question}~{\bf 6}$: Soit R la forme éche lonnée réduite de la matrice

$$\left(\begin{array}{cccc} 1 & 2 & -1 & 1 \\ 1 & 5 & 2 & 5 \\ 3 & 3 & -6 & -2 \end{array}\right).$$

Alors on a

Question 7: Soit $T: \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire définie par $T(\vec{x}) = A\vec{x}$ pour tout $\vec{x} \in \mathbb{R}^4$, où

$$A = \left(\begin{array}{cccc} 0 & 5 & 4 & 4 \\ 2 & 1 & 1 & 5 \\ 4 & 3 & -5 & 3 \end{array}\right).$$

Alors

 \Box T est injective et surjective.

 \Box T est injective mais n'est pas surjective.

 \Box T est surjective mais n'est pas injective.

T n'est ni injective ni surjective.

Question 8 : Soient \mathcal{E} la base canonique de \mathbb{R}^4 et $\mathcal{B} = (1 + t^2, 2 - t^3, t, 1 - t^2)$ une base ordonnée de \mathbb{P}_3 . Soit $T : \mathbb{P}_3 \to \mathbb{R}^4$ l'application linéaire définie par

$$T(a+bt+ct^{2}+dt^{3}) = \begin{pmatrix} a-b \\ a-c \\ 2a+c \\ 2b+d \end{pmatrix}.$$

Soit $A = [T]_{\mathcal{E},\mathcal{B}}$ la matrice de T relativement à la base \mathcal{B} de \mathbb{P}_3 et la base \mathcal{E} de \mathbb{R}^4 , telle que $[T(p)]_{\mathcal{E}} = A[p]_{\mathcal{B}}$ pour tout $p \in \mathbb{P}_3$. Alors on a

Question 9: Soient

$$\mathcal{B} = \left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right) \quad \text{et} \quad \mathcal{C} = \left(\begin{pmatrix} 3\\2\\4 \end{pmatrix}, \begin{pmatrix} 0\\1\\-2 \end{pmatrix}, \begin{pmatrix} 2\\1\\3 \end{pmatrix} \right)$$

deux bases ordonnées de \mathbb{R}^3 . Alors la matrice de changement de coordonnées $P_{\mathcal{C},\mathcal{B}}$ de la base \mathcal{B} vers la base \mathcal{C} , telle que $[\vec{x}]_{\mathcal{C}} = P_{\mathcal{C},\mathcal{B}}[\vec{x}]_{\mathcal{B}}$ pour tout $\vec{x} \in \mathbb{R}^3$, est

 $\square \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 1 & 1 & 1 \end{array} \right). \qquad \square \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & -1 & 1 \end{array} \right).$

Question	10.	Coiont
CHIESLION	1111:	-500em

$$A = \begin{pmatrix} 4 & 1 & -8 \\ 1 & 1 & 2 \\ 2 & 1 & -2 \end{pmatrix} \quad \text{et} \quad \vec{b} = \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix}.$$

Une solution $\vec{x}=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}\in\mathbb{R}^3$ du système $A\vec{x}=\vec{b}$ a pour première composante

 $x_1 = -2$.

Question 11: Soit

$$A = \begin{pmatrix} 1 & -1 \\ 2 & -2 \\ 2 & 1 \end{pmatrix} \qquad \text{et} \qquad \vec{b} = \begin{pmatrix} 5 \\ 20 \\ 0 \end{pmatrix}.$$

Alors la solution au sens des moindres carrés $\hat{x} = \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}$ de l'équation $A\vec{x} = \vec{b}$ satisfait

Question 12: Soit

$$A = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array}\right).$$

L'ensemble des valeurs propres réelles de A est

 $\rfloor \{0,1\}.$

 $\{-1,1\}.$

Question 13 : L'algorithme de Gram-Schmidt appliqué aux colonnes de la matrice

$$A = \left(\begin{array}{rrr} 1 & 3 & 0 \\ 1 & -1 & 6 \\ 1 & 1 & 3 \\ 0 & 1 & -6 \end{array}\right)$$

fournit une base orthogonale de Im(A) donnée par les vecteurs

 $\square \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \\ 6 \end{pmatrix}.$

 $\square \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\-2\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0\\4 \end{pmatrix}.$

 $\square \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\-2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1\\4 \end{pmatrix}.$

 $\square \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\-2\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-2\\c \end{pmatrix}.$

Question 14: La projection orthogonale du vecteur $\begin{pmatrix} 3\\1\\-1\\5 \end{pmatrix}$ sur le sous-espace vectoriel engendré par la

première et la deuxième colonne de la matrice A de la Question 13 est le vecteur

 $\square \begin{pmatrix} 21 \\ -15 \\ 3 \\ 9 \end{pmatrix}. \qquad \square \begin{pmatrix} 39 \\ -9 \\ 15 \\ 12 \end{pmatrix}. \qquad \square \begin{pmatrix} 4 \\ 0 \\ 2 \\ 1 \end{pmatrix}.$

 $\square \left(\begin{array}{c} 3 \\ -1 \\ 1 \\ 1 \end{array}\right).$

Question 15 : La matrice A de la Question 13 possède une décomposition QR telle que

 $r_{33} = 2\sqrt{3}$.

 $r_{33} = \sqrt{3}$.

 $r_{33} = \sqrt{2}$.

Question 16: Soient

$$\vec{w_1} = \left(egin{array}{c} 1 \\ 2 \\ 4 \\ -5 \end{array}
ight), \qquad \vec{w_2} = \left(egin{array}{c} 2 \\ -1 \\ 3 \\ 5 \end{array}
ight)$$

et $W = \operatorname{Vect}\{\vec{w_1}, \vec{w_2}\} \subset \mathbb{R}^4$. Alors une base du complément orthogonal W^{\perp} est donnée par les vecteurs

$$\square \left(\begin{array}{c} -2\\ -1\\ 1\\ 0 \end{array} \right), \left(\begin{array}{c} 1\\ 2\\ 0\\ 1 \end{array} \right).$$

$$\square \left(\begin{array}{c} -6\\1\\1\\0 \end{array}\right), \left(\begin{array}{c} 1\\2\\0\\1 \end{array}\right).$$

$$\square \left(\begin{array}{c} -6\\1\\1\\0 \end{array}\right), \left(\begin{array}{c} -1\\3\\0\\1 \end{array}\right).$$

$$\square \left(\begin{array}{c} -2\\ -1\\ 1\\ 0 \end{array} \right), \left(\begin{array}{c} -1\\ 3\\ 0\\ 1 \end{array} \right).$$

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire, si elle est parfois fausse).

	es nombres réels a	de vecteurs linéairement indépendants d'un espace rbitraires, alors $\{\alpha_1v_1,\alpha_2v_2,\dots,\alpha_kv_k\}$ est aussi une
•	☐ VRAI	FAUX
Question 18 : Les polynômes $p_1(t) = t^2 , p_2(t) = t^2 , \label{eq:polynomes}$	$g(t) = t^2 + t^3, p$	$p_3(t) = t - t^3, p_4(t) = 1 + t^3$
forment une base de $\mathbb{P}_3.$	☐ VRAI	☐ FAUX
Question 19: Si A est une matrice	de taille 3×3 ave	c valeurs propres 1, 2 et 4, alors $det(A) = 8$. FAUX
Question 20 : Si A et B sont deux	matrices inversible $(AB)^{-1} = A$	les de taille $n \times n$, alors AB est inversible et $A^{-1}B^{-1}$.
	☐ VRAI	☐ FAUX
Question 21: La matrice	$A = \begin{pmatrix} 10 & -11 \\ -11 & -11 \end{pmatrix}$	$\begin{pmatrix} 11 & 11 \\ 11 & -11 \\ 11 & 10 \end{pmatrix}$
est orthogonalement diagonalisable.	☐ VRAI	FAUX
Question 22 : Soit A une matrice de alors l'espace propre associé à la valeu		polynôme caractéristique de A est $p(\lambda) = (\lambda - 3)^2 \lambda^4$, t toujours de dimension 2. FAUX
Question 23 : Soit V un espace vectindépendants de V , alors S est une ba	-	V=n. Si S est un ensemble de vecteurs linéairement
	☐ VRAI	FAUX
Question 24: Soit A une matrice of	le taille 9×5. Si d	$\operatorname{im}(\operatorname{Ker}(A)) = 5$, alors $\operatorname{dim}(\operatorname{Im}(A)) = 0$. FAUX

Question 25: Soient

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 2 & 5 \\ 3 & 1 & 5 & -1 & -3 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \quad \text{et} \quad R = \begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & 1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Sachant que R est la forme échelonnée réduite de la matrice A, alors les vecteurs

$$\begin{pmatrix} -2\\1\\1\\0\\0 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 1\\-2\\0\\1\\0 \end{pmatrix}$$

forment une base de Ker(A).

□ VRAI □ FAUX

Question 26 : Soit A la matrice de la Question 25. Alors les vecteurs

$$\left(\begin{array}{c}1\\0\\0\\0\end{array}\right),\quad \left(\begin{array}{c}0\\1\\0\\0\end{array}\right),\quad \left(\begin{array}{c}0\\0\\1\\0\end{array}\right)$$

forment une base de Im(A).

☐ VRAI ☐ FAUX

Question 27: Soient \vec{u} et \vec{v} deux vecteurs de \mathbb{R}^n . Si $||\vec{u} + \vec{v}|| = ||\vec{u} - \vec{v}||$, alors \vec{u} et \vec{v} sont orthogonaux.

VRAI FAUX

Question 28 : Soit \mathcal{B} la base ordonnée de \mathbb{P}_2 donnée par $\mathcal{B} = (1, 1+t, 1+t^2)$ et soit $p \in \mathbb{P}_2$ défini par $p(t) = 3 + 4t + 5t^2$. Alors la première coordonnée de p par rapport à la base \mathcal{B} est -6.

☐ VRAI ☐ FAUX

Question 29 : Si A est une matrice de taille $n \times n$, alors $\det(A^T) = -\det(A)$.

☐ VRAI ☐ FAUX

Question 30: L'ensemble $\{p \in \mathbb{P}_4 : p(t) = at^4 \text{ pour un certain } a \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{P}_4 .

☐ VRAI ☐ FAUX

Question 31: Soient

$$\vec{u} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad \vec{v} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \qquad \vec{y} = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}.$$

Alors $\vec{w} = \vec{u} + \vec{v}$ est l'élément de $W = \text{Vect} \{\vec{u}, \vec{v}\} \subset \mathbb{R}^3$ le plus proche de \vec{y} .

VRAI FAUX

Question 32: Soient V et W deux espaces vectoriels de dimension finie et soit $T:V\to W$ une application linéaire. Si $\dim W<\dim V$, alors T n'est pas injective.

VRAI FAUX